Cancer: Signal Transduction
نویسنده
چکیده
Mikala Egeblad and colleagues study tumors and, in particular, the contributions of the microenvironment in which the cancer cells arise and live. Solid tumors are abnormally organized tissues that contain not only cancer cells, but also various stromal cell types and the extracellular matrix, and these latter components constitute the microenvironment. Communications between the different components of the tumor infl uence its growth, its response to therapy, and its ability to metastasize. Among the tumor-associated stromal cells, the lab’s main focus is on myeloidderived immune cells, a diverse group of cells that can enhance angiogenesis and metastasis and suppress the cytotoxic immune response against tumors. Egeblad is interested in how different types of myeloid cells are recruited to tumors and how their behaviors—for example, their physical interactions with cancer cells and other immune cells—infl uence cancer progression, including metastasis. The Egeblad lab studies the importance of the myeloid cells using mouse models of breast and pancreatic cancer and real-time imaging of cells in tumors in live mice. This enables them to follow the behaviors of and the interactions between cancer and myeloid cells in tumors during progression or treatment. This technique was instrumental when the lab recently showed that cancer drug therapy can be boosted by altering components of the tumor microenvironments, specifi cally reducing either matrix metalloproteinases (enzymes secreted by myeloid cells) or chemokine receptors (signal receptors on myeloid cells). This year, the Egeblad lab collaborated with Scott Powers’ group to understand how normal cells surrounding a tumor promote cancer growth. They found that normal cells signal to tumors through multiple pathways, and blocking these signals together has the greatest effect on inhibiting tumor growth—offering a new strategy to fi ght cancer.
منابع مشابه
The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملThe Expression of Signal Regulatory Protein-alpha in Normal and Osteoarthritic Human Articular Cartilage and Its Involvement in Chondrocyte Mechano-transduction Response
Signal regulatory proteins (SIRP) belong to immunoglobulin super family (IgSF) and relate to integrin signaling cascades. It has been shown that SIRPa is expressed in a variety of cells including myeloid cells and neurons. In the present study the expression of this IgSF member in articular chondrocytes was investigated. Methods: Using a panel of anti-SIRPalpha antibodies, immunohistochemistry...
متن کاملFokI and BsmI Polymorphisms of the VDR Gene and Breast Cancer Risk
Introduction: Vitamin D fulfills its crucial role in cell proliferation and death through signal transduction into the nucleus by vitamin D receptor (VDR). Recent studies have depicted the association between VDR gene polymorphisms and different cancers, including breast cancer. This study attempted to consider the relationship between VDR gene polymorphisms and breast cancer risk among women i...
متن کاملFokI and BsmI Polymorphisms of the VDR Gene and Breast Cancer Risk
Introduction: Vitamin D fulfills its crucial role in cell proliferation and death through signal transduction into the nucleus by vitamin D receptor (VDR). Recent studies have depicted the association between VDR gene polymorphisms and different cancers, including breast cancer. This study attempted to consider the relationship between VDR gene polymorphisms and breast cancer risk among women i...
متن کاملThe roles of EPIYA sequence to perturb the cellular signaling pathways and cancer risk
Abstract It was shown that several pathogenic bacterial effector proteins contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) or a similar sequence. These bacterial EPIYA effectors are delivered into host cell via type III or IV secretion system, where they undergo tyrosine phosphorylation at the EPIYA sequences, which triggers interaction with multiple host cell SH2 domain-containing proteins and thereby...
متن کاملTargeted cancer therapy: promise and reality.
Signal transduction therapy for cancer targets specific molecular elements that are essential for survival of the tumor. Gleevec has a profound effect on early phase chronic myeloid leukemia because it inhibits the major driving factor of the tumor, BCR-ABL. Almost all other cancers depend on several factors, and blocking a single signal transduction factor is largely ineffective. Effective sig...
متن کامل